Name
minmax — Min/Max algorithm for noise removal from images
Calling Sequence
Output = minmax(Input, [NSteps, StepSize, Adapt, NonAdaptThreshold,
IntMaskSize, ExtMaskSize])
Parameters
- Input
-
a matrix containing a gray-scale image to be filtered by min/max algorithm.
- NSteps
-
number of steps to perform. Default is 10.
- StepSize
-
the step increment for the iterative procedure. Default is 0.05.
- Adapt
-
indicates if the algorithm should adapt itself to the local image gray level or if it considers the NonAdaptThreshold value for defining light and dark regions. Default is FALSE.
- NonAdaptThreshold
-
If Adapt is FALSE, intensity values greater than NonAdaptThreshold will be considered as light regions.
- IntMaskSize
-
Size of the Internal window in which curvature values will be taken into account for deciding Min or Max curvature flow. Default is 1.
- ExtMaskSize
-
Size of the External window in which curvature values will be taken into account for deciding Min or Max curvature flow in the Adapt mode. Default is 0.
- Output
-
a matrix containing the filtered image.
Description
Function minmax filters a gray-scale image using curvature-guided surface evolution. Object borders remain sharp while low-scale noise is removed.
Examples
M = gray_imread(SIPDIR+'images/noisypoly.bmp');
subplot(1,2,1);
imshow(M);
new_M = minmax(M, NSteps=30);
subplot(1,2,2);
imshow(new_M);
Authors
Leandro Estrozi <lfestrozi (AT) if DOT
sc DOT usp DOT br> |
Availability
The latest version of the Scilab Image Processing toolbox can be found at
http://siptoolbox.sourceforge.net